Engineering Mathematics with Examples and Applications PDF

Engineering Mathematics with Examples and Applications provides a compact and concise primer in the field, starting with the foundations, and then gradually developing to the advanced level of mathematics that is necessary for all engineering disciplines. Therefore, this book's aim is to help undergraduates rapidly develop the fundamental knowledge of engineering mathematics.
The book can also be used by graduates to review and refresh their mathematical skills. Step-by-step worked examples will help the students gain more insights and build sufficient confidence in engineering mathematics and problem-solving. The main approach and style of this book is informal, theorem-free, and practical. By using an informal and theorem-free approach, all fundamental mathematics topics required for engineering are covered, and readers can gain such basic knowledge of all important topics without worrying about rigorous (often boring) proofs.
Certain rigorous proof and derivatives are presented in an informal way by direct, straightforward mathematical operations and calculations, giving students the same level of fundamental knowledge without any tedious steps. In ad.
Chapter List (261 chapters):
- Chapter 1: Cover image
- Chapter 2: Title page
- Chapter 3: Table of Contents
- Chapter 4: Copyright
- Chapter 5: About the Author
- Chapter 6: Preface
- Chapter 7: Acknowledgment
- Chapter 8: Part I: Fundamentals
- Chapter 9: Chapter 1: Equations and Functions
- Chapter 10: Abstract
- Chapter 11: 1.1. Numbers and Real Numbers
- Chapter 12: 1.2. Equations
- Chapter 13: 1.3. Functions
- Chapter 14: 1.4. Quadratic Equations
- Chapter 15: 1.5. Simultaneous Equations
- Chapter 16: Exercises
- Chapter 17: Chapter 2: Polynomials and Roots
- Chapter 18: 2.1. Index Notation
- Chapter 19: 2.2. Floating Point Numbers
- Chapter 20: 2.3. Polynomials
- Chapter 21: 2.4. Roots
- Chapter 22: Exercises
- Chapter 23: Chapter 3: Binomial Theorem and Expansions
- Chapter 24: Abstract
- Chapter 25: 3.1. Binomial Expansions
- Chapter 26: 3.2. Factorials
- Chapter 27: 3.3. Binomial Theorem and Pascal's Triangle
- Chapter 28: Exercises
- Chapter 29: Chapter 4: Sequences
- Chapter 30: Abstract
- Chapter 31: 4.1. Simple Sequences
- Chapter 32: 4.2. Fibonacci Sequence
- Chapter 33: 4.3. Sum of a Series
- Chapter 34: 4.4. Infinite Series
- Chapter 35: Exercises
- Chapter 36: Chapter 5: Exponentials and Logarithms
- Chapter 37: Abstract
- Chapter 38: 5.1. Exponential Function
- Chapter 39: 5.2. Logarithm
- Chapter 40: 5.3. Change of Base for Logarithm
- Chapter 41: Exercises
- Chapter 42: Chapter 6: Trigonometry
- Chapter 43: Abstract
- Chapter 44: 6.1. Angle
- Chapter 45: 6.2. Trigonometrical Functions
- Chapter 46: 6.3. Sine Rule
- Chapter 47: 6.4. Cosine Rule
- Chapter 48: Exercises
- Chapter 49: Part II: Complex Numbers
- Chapter 50: Chapter 7: Complex Numbers
- Chapter 51: Abstract
- Chapter 52: 7.1. Why Do Need Complex Numbers?
- Chapter 53: 7.2. Complex Numbers
- Chapter 54: 7.3. Complex Algebra
- Chapter 55: 7.4. Euler's Formula
- Chapter 56: 7.5. Hyperbolic Functions
- Chapter 57: Exercises
- Chapter 58: Part III: Vectors and Matrices
- Chapter 59: Chapter 8: Vectors and Vector Algebra
- Chapter 60: Abstract
- Chapter 61: 8.1. Vectors
- Chapter 62: 8.2. Vector Algebra
- Chapter 63: 8.3. Vector Products
- Chapter 64: 8.4. Triple Product of Vectors
- Chapter 65: Exercises
- Chapter 66: Chapter 9: Matrices
- Chapter 67: Abstract
- Chapter 68: 9.1. Matrices
- Chapter 69: 9.2. Matrix Addition and Multiplication
- Chapter 70: 9.3. Transformation and Inverse
- Chapter 71: 9.4. System of Linear Equations
- Chapter 72: 9.5. Eigenvalues and Eigenvectors
- Chapter 73: Exercises
- Chapter 74: Part IV: Calculus
- Chapter 75: Chapter 10: Differentiation
- Chapter 76: 10.1. Gradient and Derivative
- Chapter 77: 10.2. Differentiation Rules
- Chapter 78: 10.3. Series Expansions and Taylor Series
- Chapter 79: Exercises
- Chapter 80: Chapter 11: Integration
- Chapter 81: Abstract
- Chapter 82: 11.1. Integration
- Chapter 83: 11.2. Integration by Parts
- Chapter 84: 11.3. Integration by Substitution
- Chapter 85: Exercises
- Chapter 86: Chapter 12: Ordinary Differential Equations
- Chapter 87: Abstract
- Chapter 88: 12.1. Differential Equations
- Chapter 89: 12.2. First-Order Equations
- Chapter 90: 12.3. Second-Order Equations
- Chapter 91: 12.4. Higher-Order ODEs
- Chapter 92: 12.5. System of Linear ODEs
- Chapter 93: Exercises
- Chapter 94: Chapter 13: Partial Differentiation
- Chapter 95: Abstract
- Chapter 96: 13.1. Partial Differentiation
- Chapter 97: 13.2. Differentiation of Vectors
- Chapter 98: 13.3. Polar Coordinates
- Chapter 99: 13.4. Three Basic Operators
- Chapter 100: Exercises
- Chapter 101: Chapter 14: Multiple Integrals and Special Integrals
- Chapter 102: Abstract
- Chapter 103: 14.1. Line Integral
- Chapter 104: 14.2. Multiple Integrals
- Chapter 105: 14.3. Jacobian
- Chapter 106: 14.4. Special Integrals
- Chapter 107: Exercises
- Chapter 108: Chapter 15: Complex Integrals
- Chapter 109: Abstract
- Chapter 110: 15.1. Analytic Functions
- Chapter 111: 15.2. Complex Integrals
- Chapter 112: Exercises
- Chapter 113: Part V: Fourier and Laplace Transforms
- Chapter 114: Chapter 16: Fourier Series and Transform
- Chapter 115: Abstract
- Chapter 116: 16.1. Fourier Series
- Chapter 117: 16.2. Fourier Transforms
- Chapter 118: 16.3. Solving Differential Equations Using Fourier Transforms
- Chapter 119: 16.4. Discrete and Fast Fourier Transforms
- Chapter 120: Exercises
- Chapter 121: Chapter 17: Laplace Transforms
- Chapter 122: Abstract
- Chapter 123: 17.1. Laplace Transform
- Chapter 124: 17.2. Transfer Function
- Chapter 125: 17.3. Solving ODE via Laplace Transform
- Chapter 126: 17.4. Z-Transform
- Chapter 127: 17.5. Relationships between Fourier, Laplace and Z-transforms
- Chapter 128: Exercises
- Chapter 129: Part VI: Statistics and Curve Fitting
- Chapter 130: Chapter 18: Probability and Statistics
- Chapter 131: Abstract
- Chapter 132: 18.1. Random Variables
- Chapter 133: 18.2. Mean and Variance
- Chapter 134: 18.3. Binomial and Poisson Distributions
- Chapter 135: 18.4. Gaussian Distribution
- Chapter 136: 18.5. Other Distributions
- Chapter 137: 18.6. The Central Limit Theorem
- Chapter 138: 18.7. Weibull Distribution
- Chapter 139: Exercises
- Chapter 140: Chapter 19: Regression and Curve Fitting
- Chapter 141: Abstract
- Chapter 142: 19.1. Sample Mean and Variance
- Chapter 143: 19.2. Method of Least Squares
- Chapter 144: 19.3. Correlation Coefficient
- Chapter 145: 19.4. Linearization
- Chapter 146: 19.5. Generalized Linear Regression
- Chapter 147: 19.6. Hypothesis Testing
- Chapter 148: Exercises
- Chapter 149: Part VII: Numerical Methods
- Chapter 150: Chapter 20: Numerical Methods
- Chapter 151: Abstract
- Chapter 152: 20.1. Finding Roots
- Chapter 153: 20.2. Bisection Method
- Chapter 154: 20.3. Newton-Raphson Method
- Chapter 155: 20.4. Numerical Integration
- Chapter 156: 20.5. Numerical Solutions of ODEs
- Chapter 157: Exercises
- Chapter 158: Chapter 21: Computational Linear Algebra
- Chapter 159: Abstract
- Chapter 160: 21.1. System of Linear Equations
- Chapter 161: 21.2. Gauss Elimination
- Chapter 162: 21.3. LU Factorization
- Chapter 163: 21.4. Iteration Methods
- Chapter 164: 21.5. Newton-Raphson Method
- Chapter 165: 21.6. Conjugate Gradient Method
- Chapter 166: Exercises
- Chapter 167: Part VIII: Optimization
- Chapter 168: Chapter 22: Linear Programming
- Chapter 169: Abstract
- Chapter 170: 22.1. Linear Programming
- Chapter 171: 22.2. Simplex Method
- Chapter 172: 22.3. A Worked Example
- Chapter 173: Exercises
- Chapter 174: Chapter 23: Optimization
- Chapter 175: Abstract
- Chapter 176: 23.1. Optimization
- Chapter 177: 23.2. Optimality Criteria
- Chapter 178: 23.3. Unconstrained Optimization
- Chapter 179: 23.4. Gradient-Based Methods
- Chapter 180: 23.5. Nonlinear Optimization
- Chapter 181: 23.6. Karush-Kuhn-Tucker Conditions
- Chapter 182: 23.7. Sequential Quadratic Programming
- Chapter 183: Exercises
- Chapter 184: Part IX: Advanced Topics
- Chapter 185: Chapter 24: Partial Differential Equations
- Chapter 186: Abstract
- Chapter 187: 24.1. Introduction
- Chapter 188: 24.2. First-Order PDEs
- Chapter 189: 24.3. Classification of Second-Order PDEs
- Chapter 190: 24.4. Classic Mathematical Models: Some Examples
- Chapter 191: 24.5. Solution Techniques
- Chapter 192: Exercises
- Chapter 193: Chapter 25: Tensors
- Chapter 194: Abstract
- Chapter 195: 25.1. Summation Notations
- Chapter 196: 25.2. Tensors
- Chapter 197: 25.3. Hooke's Law and Elasticity
- Chapter 198: Exercises
- Chapter 199: Chapter 26: Calculus of Variations
- Chapter 200: Abstract
- Chapter 201: 26.1. Euler-Lagrange Equation
- Chapter 202: 26.2. Variations with Constraints
- Chapter 203: 26.3. Variations for Multiple Variables
- Chapter 204: Exercises
- Chapter 205: Chapter 27: Integral Equations
- Chapter 206: Abstract
- Chapter 207: 27.1. Integral Equations
- Chapter 208: 27.2. Solution of Integral Equations
- Chapter 209: Exercises
- Chapter 210: Chapter 28: Mathematical Modeling
- Chapter 211: Abstract
- Chapter 212: 28.1. Mathematical Modeling
- Chapter 213: 28.2. Model Formulation
- Chapter 214: 28.3. Different Levels of Approximations
- Chapter 215: 28.4. Parameter Estimation
- Chapter 216: 28.5. Types of Mathematical Models
- Chapter 217: 28.6. Brownian Motion and Diffusion: A Worked Example
- Chapter 218: Exercises
- Chapter 219: Appendix A: Mathematical Formulas
- Chapter 220: A.1. Differentiation and Integration
- Chapter 221: A.2. Complex Numbers
- Chapter 222: A.3. Vectors and Matrices
- Chapter 223: A.4. Fourier Series and Transform
- Chapter 224: A.5. Asymptotics
- Chapter 225: A.6. Special Integrals
- Chapter 226: Appendix B: Mathematical Software Packages
- Chapter 227: B.1. Matlab
- Chapter 228: B.2. Software Packages Similar to Matlab
- Chapter 229: B.3. Symbolic Computation Packages
- Chapter 230: B.4. R and Python
- Chapter 231: Appendix C: Answers to Exercises
- Chapter 232: Chapter 1
- Chapter 233: Chapter 2
- Chapter 234: Chapter 3
- Chapter 235: Chapter 4
- Chapter 236: Chapter 5
- Chapter 237: Chapter 6
- Chapter 238: Chapter 7
- Chapter 239: Chapter 8
- Chapter 240: Chapter 9
- Chapter 241: Chapter 10
- Chapter 242: Chapter 11
- Chapter 243: Chapter 12
- Chapter 244: Chapter 13
- Chapter 245: Chapter 14
- Chapter 246: Chapter 15
- Chapter 247: Chapter 16
- Chapter 248: Chapter 17
- Chapter 249: Chapter 18
- Chapter 250: Chapter 19
- Chapter 251: Chapter 20
- Chapter 252: Chapter 21
- Chapter 253: Chapter 22
- Chapter 254: Chapter 23
- Chapter 255: Chapter 24
- Chapter 256: Chapter 25
- Chapter 257: Chapter 26
- Chapter 258: Chapter 27
- Chapter 259: Chapter 28
- Chapter 260: Bibliography
- Chapter 261: Index